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In 1967, scientists used a simple climate model to predict that human-caused increases
in atmospheric CO2 should warm Earth’s troposphere and cool the stratosphere. This
important signature of anthropogenic climate change has been documented in weather
balloon and satellite temperature measurements extending from near-surface to the
lower stratosphere. Stratospheric cooling has also been confirmed in the mid to upper
stratosphere, a layer extending from roughly 25 to 50 km above the Earth’s surface
(S25−50). To date, however, S25−50 temperatures have not been used in pattern-
based attribution studies of anthropogenic climate change. Here, we perform such a
“fingerprint” study with satellite-derived patterns of temperature change that extend
from the lower troposphere to the upper stratosphere. Including S25−50 information
increases signal-to-noise ratios by a factor of five, markedly enhancing fingerprint
detectability. Key features of this global-scale human fingerprint include stratospheric
cooling and tropospheric warming at all latitudes, with stratospheric cooling amplifying
with height. In contrast, the dominant modes of internal variability in S25−50 have
smaller-scale temperature changes and lack uniform sign. These pronounced spatial
differences between S25−50 signal and noise patterns are accompanied by large cooling
of S25−50 (1 to 2 ◦C over 1986 to 2022) and low S25−50 noise levels. Our results
explain why extending “vertical fingerprinting” to the mid to upper stratosphere
yields incontrovertible evidence of human effects on the thermal structure of Earth’s
atmosphere.

climate change detection and attribution | stratospheric temperature | satellite data |
climate modeling

In simulations performed with a simple radiative-convective climate model in 1967,
Manabe and Wetherald progressively doubled levels of atmospheric CO2 from 150 to
300 to 600 parts per million (1). This yielded increasing warming of the troposphere and
increasing cooling of the stratosphere (2), with cooling predicted to amplify with greater
height above the tropopause. The vertical profile of temperature change predicted by
Manabe and Wetherald was subsequently confirmed by more complex models and by
observations (3–8).

By the early 2000s, measurements of multidecadal changes in the thermal structure
of the atmosphere were available from weather balloon networks (9, 10), satellite-based
microwave sounders (11–13), and reanalyses (14). All three sources provided adequate
spatial coverage for estimating observed patterns of zonal-mean temperature change (5–
7, 15) and for comparing these patterns with vertically resolved temperature changes
obtained from General Circulation Model simulations.

Early comparisons of this type noted that the observed latitude-height patterns were
distinctly different from estimated patterns of natural internal variability but consistent
with the profile of atmospheric temperature change predicted by Manabe and Wetherald
in response to CO2 increases (4, 16). This early research relied on weather balloon
datasets with coverage extending from the near-surface to the lower stratosphere, roughly
20 to 25 km above the surface.

Building on this pioneering work, quantitative “fingerprint” studies revealed that
model-predicted latitude-height patterns of anthropogenic influence were statistically
identifiable in weather balloon temperature data (15, 17). This finding has been
confirmed repeatedly by subsequent investigations with newer models and improved
weather balloon datasets (18, 19). The primary anthropogenic influences identified
in weather balloon atmospheric temperature data are external forcings associated with
increases in well-mixed greenhouse gases, the depletion and recovery of stratospheric
ozone, and changes in particulate pollution (18–20).
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Anthropogenic fingerprints have also been identified in atmo-
spheric temperature measurements obtained from satellite-based
Microwave Sounding Units and Advanced Microwave Sounding
Units (MSU and AMSU) (21–23). As in the case of fingerprint
studies with weather balloon data, the early fingerprint work
with satellite-derived atmospheric temperatures relied on datasets
that did not extend higher than approximately 25 km above the
Earth’s surface (24–27).

In consequence, all previous pattern-based studies seeking to
discern a human fingerprint in weather balloon and satellite
atmospheric temperature data have neglected the mid to upper
stratosphere (S25−50), where the temperature signal of CO2
increase is expected to be considerably larger than in the
troposphere or the lower stratosphere (1, 8). In searching
for an anthropogenic CO2 signal, the S25−50 layer has the
additional advantage that it is less affected than lower atmospheric
layers by particulate pollution and by human-caused changes in
stratospheric ozone (28).

Satellite-based Stratospheric Sounding Units (SSU) provide
temperature changes for the S25−50 layer (29). Initial SSU-based
temperature-change estimates obtained by two different groups
diverged markedly (8) but are now in closer agreement (27,
30, 31).* Only one group, however, supplies spatially resolved
SSU data suitable for pattern-based fingerprint studies and has
merged SSU data with AMSU-A data (AMSU-A also samples the
S25−50 layer). Merging allows extension of SSU data beyond 2006
(27), yielding a continuous record of mid to upper stratospheric
temperature change from 1986 to the present.† We refer to this
merged product as “SSU”. Merged MSU and AMSU data, which
sample the troposphere and lower stratosphere, are referred to as
“MSU”.

Here, we expand upon earlier fingerprint studies that relied
solely on MSU data for estimating latitude-height profiles of at-
mospheric temperature change (23). We leverage the availability
of improved SSU and MSU datasets and of newer simulations
(32) performed with models with higher tops, which permits
calculation of synthetic SSU temperatures from simulation
output. We analyze atmospheric temperature signals from a
multimodel ensemble of historical simulations (HISText ) that
have been extended after 2014 with results from a specific climate
change scenario. We also rely on an ensemble of preindustrial
control runs with no year-to-year changes in human or natural
external factors. The control runs provide multimodel estimates
of the “noise” of natural internal variability. Model signal and
noise estimates are essential ingredients of fingerprint studies
(23, 33, 34).

It is not obvious a priori how incorporating the mid to upper
stratosphere will affect signal-to-noise (S/N) ratios and the
detectability of an anthropogenic fingerprint. While model and
observed cooling signals in S25−50 are ≈1 to 2 ◦C over the
satellite era (8, 31, 35), the noise of natural internal variability
can be appreciable on monthly timescales, partly due to the
impact of sudden stratospheric warming events on S25−50
temperatures over the Arctic (36). Additionally, it must be
determined whether human-caused signals and natural variability
have similar temperature-change patterns in the S25−50 layer—a
situation which would be unfavorable for signal identification
(37). Although previous investigations have compared simulated
and observed global-mean temperature changes in the S25−50

*This agreement does not necessarily signify that observational uncertainties in SSU data
are trivially small. The process of identifying and adjusting for complex nonclimatic factors
is ongoing and benefits from the involvement of multiple independent scientific groups.
†The SSU record commences in 1979, but several SSU channels have data gaps prior to
1986 (29).

layer (8, 31, 35), our study is the first to performs pattern-
based fingerprinting with temperature changes extending from
the lower troposphere to the upper stratosphere.

We rely on satellite data from three groups and on model data
from phase 6 of the Coupled Model Intercomparison Project
(CMIP6) (32). Our focus is on temperature changes in six
atmospheric layers: SSU channels 3, 2, and 1 and MSU retrievals
for the lower stratosphere (TLS), the total troposphere (TTT),
and the lower troposphere (TLT). The approximate peaks of the
weighting functions for these six layers are at 45, 38, 30, 19,
5.6, and 3.1 km above the Earth’s surface (respectively). Further
details of all datasets and analysis methods are given in Materials
and Methods and the SI Appendix.

Global-Mean Changes

Consistent with the early Manabe and Wetherald predic-
tions of the atmospheric temperature response to CO2 in-
crease (1), both the satellite data and simulations performed
with state-of-the-art Earth system models (ESMs) show tro-
pospheric warming and stratospheric cooling over 1986 to
2022 (Fig. 1) (31, 35, 38, 39). Other common features in
models and satellite data include amplification of cooling with
increasing height in the stratosphere (8, 31, 35), short-term
stratospheric warming after the 1991 Pinatubo eruption (with
warming decreasing in amplitude with increasing stratospheric
height), longer-term tropospheric cooling following Pinatubo
(40), and a roughly 11-y solar signal in the SSU channels
(8, 35).

Noticeable model-versus-observed differences include overes-
timated model-average stratospheric cooling and larger model-
average tropospheric warming trends (Fig. 2). The latter dis-
crepancy is due to multiple factors, including model-versus-
observed differences in the phasing of multidecadal Pacific
internal variability (41), model forcing and response errors (42–
44), and the relatively limited ensemble size of HISText runs
available here (41). Residual errors in observed satellite data are
also a possible contributory factor (39).

In the three SSU channels, the stratospheric cooling trends over
1986 to 2022 in satellite data and HISText runs are over an order
of magnitude larger than control run estimates of the natural
internal variability of 37-y atmospheric temperature trends (Fig. 2
A–C ). The amplitudes of forced and unforced trends are more
similar in the lower stratosphere and troposphere, although
all satellite and HISText TLS, TTT, and TLT trends are still
clearly separated from their respective control run distributions
(Fig. 2 D–F ). These results indicate that at the global-mean level,
the S/N properties of the S25−50 layer are highly favorable for
anthropogenic signal detection.

The analysis in Fig. 2 is over 1986 to 2022 only—the period
of continuous coverage of SSU and MSU temperature measure-
ments. This period samples both the pronounced depletion of
stratospheric ozone in the last three decades of the 20th century
and the gradual recovery of stratospheric ozone in the early
21st century (28, 45). In addition to ozone, other atmospheric
constituents can also show important time variations in radiative
forcing (46–49). It is of interest here to consider the impact
of such variations on simulated temperature-change profiles and
to explore how S/N properties change as the net anthropogenic
forcing changes.

Fig. 3 shows simulated global-mean temperature changes in the
HISText runs. Results are for four different 25-y time windows:
1950 to 1974, 1975 to 1999, 2000 to 2024, and 2025 to 2049.
The second and third periods sample times that are influenced by
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Fig. 1. Observed and simulated changes in global-mean monthly mean temperature in six atmospheric layers. Results are temperatures from channels 3, 2,
and 1 of the Stratospheric Sounding Unit (SSU; panels A–C) (27), lower stratospheric temperature from the Microwave Sounding Unit (MSU TLS; panel D), MSU
total tropospheric temperature (TTT; panel E), and MSU lower tropospheric temperature (TLT; panel F ) (25). The peaks of the weighting functions for these six
layers are at ca. 45, 38, 30, 19, 5.6, and 3.1 km above the Earth’s surface (respectively). Results are anomalies relative to climatological monthly means over
1986 to 2022. Model simulations are from nine different CMIP6 models and a total of 32 realizations of historical climate change (Methods and SI Appendix).

ozone depletion and ozone recovery (respectively) (28, 45); the
fourth period has substantially larger net anthropogenic forcing
than the first. As in Fig. 2, control run trend distributions
provide information on the magnitude of unforced atmospheric
temperature changes. This information is valuable for assessing
the significance of the forced temperature trends in the HISText
simulations.

Consider the troposphere first. In TLT and TTT, each
successive 25-y period has larger ensemble-mean tropospheric
warming and greater separation from the mean of the sam-
pling distribution of unforced trends (i.e., higher S/N levels).
This progressive warming is consistent with increasing positive
forcing by anthropogenic greenhouse gases. The early 1950 to
1974 period has large, time-increasing negative anthropogenic
sulfate aerosol forcing (49), which helps to explain why the
ensemble-mean HISText tropospheric temperature trends over
this period are close to zero. Anthropogenic sulfate aerosol
forcing decreases nonlinearly in the three subsequent analysis
periods (49, 50), yielding a decrease in sulfate aerosol-induced
tropospheric cooling. Although these pronounced temporal

changes in anthropogenic sulfate aerosol forcing influence TLT
and TTT, they have minimal effect on simulated stratospheric
temperature trends.

In the three SSU channels, stratospheric cooling occurs in
each of the four analysis periods and in every HISText realization
(Fig. 3 A–C ). As in the case of the 1986 to 2022 period,
cooling in the HISText runs amplifies with increasing height
and is invariably significantly larger than 25-y trends arising
from internal variability. One key difference relative to the
tropospheric results in Fig. 3 E and F is that stratospheric cooling
does not increase monotonically as the 25-y analysis window
advances. The effect of the large stratospheric ozone depletion
over 1975 to 1999 is to augment CO2-induced stratospheric
cooling. As a result, the ensemble-mean HISText cooling of each
SSU channel (and of TLS) is larger over 1975 to 1999 than in the
subsequent 2000 to 2024 period. By 2025 to 2049, the primarily
CO2-driven cooling of the S25−50 layer exceeds the CO2 and
ozone-driven S25−50 cooling over 1975 to 1999.

Fig. 3 shows that despite important changes over time in
the relative contributions of ozone and GHG forcing, the

PNAS 2023 Vol. 120 No. 20 e2300758120 https://doi.org/10.1073/pnas.2300758120 3 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 N
O

A
A

 C
E

N
T

R
A

L
 L

IB
R

A
R

Y
 o

n 
A

ug
us

t 1
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
7.

75
.8

0.
24

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2300758120#supplementary-materials


Fig. 2. Total global-mean atmospheric temperature changes over 37-y periods. Results are for six different atmospheric layers, arranged vertically by the
height of the layer with respect to the Earth’s surface (panels A–F ). The total temperature change is the least-squares linear trend per year× 37 y, calculated over
1986 to 2022 for the HISText realizations and satellite observations and over 37-y nonoverlapping segments of preindustrial control runs. The latter provides
estimates of the natural internal variability of atmospheric temperature trends inferred from nine different CMIP6 models. The same nine models were used
to calculate the multimodel average synthetic SSU and MSU atmospheric temperature trends from 32 realizations of HISText runs with anthropogenic and
natural external forcing. Trends from individual HISText realizations are also shown. See SI Appendix for details of control run trend distributions and sources
of observed data. The y-axis location of the HISText trends and observed trends is arbitrary.

simulated global-mean temperature change profile in response
to anthropogenic forcing is remarkably robust over 1950 to
2049. The temperature-change contrasts between tropospheric
warming and cooling of the mid to upper stratosphere generally
increase with time and with larger net anthropogenic forcing and
become easier to discriminate from natural internal variability.
The exception is in the lower stratosphere, where forced temper-
ature changes become less significant in the second half of the
21st century. This is due to two factors. First, lower stratospheric
cooling due to GHG increases is partly offset by warming arising
from the recovery of stratospheric ozone (28, 45). Second, the
TLS weighting function receives a small contribution from CO2-
induced warming of the tropical upper troposphere (51). As
tropical upper tropospheric warming increases over time (and as
the height of the tropical tropopause increases), this contribution
becomes larger.

Latitude-Height Trend Patterns

Latitude-height patterns of atmospheric temperature trends are
shown in Fig. 4 A–L. In all nine models and in observations,
tropospheric warming is hemispherically asymmetric, with larger
warming over the Arctic than over the Antarctic. This asymmetry
has multiple causes, including reduction in atmospheric burdens
of anthropogenic aerosols, feedbacks associated with substantial
changes in Arctic sea ice extent over the satellite era (52, 53),

and hemispheric differences in ocean circulation and heat
uptake (54).

In satellite data, stratospheric cooling over 1986 to 2022 is
also asymmetric, with larger cooling over the Arctic and upward
extension of a reduced cooling signal over the Antarctic (Fig. 4
K and L). Some models capture aspects of this upward extension
at mid to high southern latitudes (Fig. 4 B, C , F , G, H , and
I ), but most models lack the observed south-to-north decrease in
S25−50 and the maximum Arctic cooling in S25−50.

The observed global-scale cooling of the S25−50 layer is
noticeably larger over 1986 to 2000 than over 2001 to 2022
(SI Appendix, Fig. S1 A and B). Larger stratospheric cooling
in the earlier period is partly due to recovery from Pinatubo-
induced stratospheric warming (Fig. 1 A–D). The CMIP6
multimodel average captures time-evolving behavior similar to
that in the satellite data but lacks the prominent observed Arctic
cooling of S25−50 over 1986 to 2000 (SI Appendix, Fig. S1 C
and D). As in the case of model-versus-observed stratospheric
cooling differences over the longer 1986 to 2022 period, this
discrepancy over the Arctic is likely related to multiple factors
(see Conclusions).

Fingerprint Results

We use a standard pattern-based fingerprint method (23, 33, 55).
This yields S/N ratios as a function of L, the timescale in
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Fig. 3. Sensitivity of global-mean atmospheric temperature changes to the choice of analysis period. Results are for the same six atmospheric layers shown
in Fig. 2 (panels A–F ). The total temperature change is the least-squares linear trend per year × 25 y, calculated over four different periods for the HISText
realizations (1950 to 1974, 1975 to 1999, 2000 to 2024, and 2025 to 2049) and over 25-y nonoverlapping segments of CMIP6 preindustrial control runs. See Fig.
2 for analysis details and SI Appendix for details of control run trend distributions. The y-axis location of the HISText trends is arbitrary.

years. The fingerprint F is estimated from the multimodel
average latitude-height temperature changes in the HISText
simulations. The signal S is a measure of the pattern similarity
between F and time-varying patterns of temperature changes
in observations or in individual HISText simulations. The noise
N provides information on the similarity between F and time-
varying patterns of natural internal variability in model control
runs (Methods and SI Appendix). If S/N ratios are larger than
3, it is unlikely that the time-increasing similarity between
F and the satellite data could be due to internal variability
alone (55).

Since our interest is in exploring the impact of temperature
changes from different atmospheric layers on S/N properties,
we show the signals calculated with fingerprints for four different
spatial domains (Fig. 5A). We refer to these domains subsequently
as TROP, SSU, MSU, and SSU+MSU. They comprise the
two tropospheric layers in Fig. 1, the three SSU channels, the
three MSU layers, and all six layers (respectively). Fingerprints
estimated from the multimodel average atmospheric temperature
changes for these four domains are shown in the Left column of
Fig. 6. The fingerprints are dominated by anthropogenic external
forcing (SI Appendix).

Consistent with the size of the global-mean temperature
changes in Fig. 2, the largest signals in Fig. 5A are for the
two domains (SSU and SSU+MSU) that include the large
temperature changes in the mid to upper stratosphere; the
smallest signals are for MSU and TROP. This ordering of signal
strength holds for the simulations and for the observations. The
model spread in S(L) is greater for smaller values of L, reflecting
the larger noise of internal variability on shorter timescales (56).

On longer multidecadal timescales, the main drivers of spread in
S(L) are intermodel forcing and response differences (57).

Values of S(L) decrease for analysis periods ending in 1991,
gradually recovering over the following 4 to 5 y (Fig. 5A).
This decrease in S(L) is due to the short-term stratospheric
warming and tropospheric cooling caused by the 1991 Pinatubo
eruption—temperature changes that are of opposite sign to the
searched-for anthropogenic fingerprints (Fig. 6 A, D, G, and
J ). For the SSU+MSU and SSU domains, stratospheric cooling
during the recovery from the Pinatubo eruption augments the
gradual anthropogenically induced stratospheric cooling and
produces a rapid increase in signal strength over 1992 to 1997.

For all four atmospheric regions, the noise N decreases as L
increases (Fig. 5B). Values of N are largest for TROP and MSU
and smallest for SSU+MSU and SSU—the reverse of the ordering
for signal strength in Fig. 5A. Dividing S(L) by the respective
value of N (L) yields the signal-to-noise ratio SN(L) in Fig. 5C .
This ratio is markedly smaller for TROP and MSU than for SSU
and SSU+MSU. In the three satellite datasets, SN(L) for the 37-
y signal trend over the 1986 to 2022 period varies between 4.6
and 6.6 for TROP, 6.7 and 9.0 for MSU, and 37.3 and 38.7 for
SSU+MSU. For the SSU domain, SN(L) over the full analysis
period is 49.3 in the only available satellite dataset (27). In all
four latitude-height domains, the model-predicted fingerprints
in Fig. 6 are identifiable with high statistical confidence (at or
above the 1% level) in each of the 32 HISText realizations and in
each of the three observed datasets.‡

‡We note, however, that the three observational datasets are not independent for the
SSU or SSU+MSU domains—all share the same STAR SSU data.
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Fig. 4. Simulated and observed latitude-height profiles of atmospheric temperature trends over 1986 to 2022 (in ◦C/decade). Trends were calculated from
zonal-mean temperatures for the six atmospheric layers in Fig. 1. Trends are plotted at the approximate heights of the maxima of each weighting function peak
and were smoothly interpolated in the vertical. Model results are for HISText simulations performed with nine different CMIP6 models (panels A–I). If more than
one HISText realization was available for an individual model, the result in panels A–I is for the ensemble-mean trends. The CMIP6 multimodel average is also
shown (MMA; panel J). Satellite observations are for SSU data combined with two different observed MSU datasets (panels K and L; Methods). Stippling in panel
J denotes latitude bands and layers at which the local S/N ratio exceeds 2—i.e., where the CMIP6 MMA trend is two times greater than the between-model
SD of the trend. The stippling indicates that at each latitude and for each of the six atmospheric layers, the MMA temperature trends are large relative to the
between-model SD of trends. The sole exception is in TLS over the Arctic, where there are noticeable intermodel trend differences.

One of the key inferences from Fig. 5C—and a central
finding from our study—is that extending vertical fingerprinting
from “MSU space” to combined “SSU+MSU space” amplifies
signal-to-noise ratios in satellite data by a factor of ≈5 for
SN(L) calculated over the full 1986 to 2022 period. The
inclusion of temperature changes in S25−50 is therefore useful
in discriminating between anthropogenically driven atmospheric
temperature change and internally generated variability. This
enhancement of SN(L) in SSU+MSU is partly due to the large
amplitude of the signal and the relatively low noise amplitude in
S25−50 (Fig. 2). Signal-to-noise enhancement also reflects relative
differences in the spatial similarity between the fingerprint F and
the leading patterns of natural internal variability in the SSU and
MSU domains (see below).

Patterns of Signal and Noise Modes

In the fingerprint for each of the four domains considered here,
temperature changes for individual satellite sounding channels
vary with latitude but remain either positive or negative across all
latitudes (Left column of Fig. 6). In terms of vertical structure,
the fingerprints for the MSU and SSU+MSU domains are
characterized by a reversal with height in the sign of temperature
change (Fig. 6 D and J ), consistent with the large tropospheric
warming and stratospheric cooling signals common to the models
analyzed here (Fig. 4 A–I ). Other prominent fingerprint features
include Arctic amplification of low-latitude warming in TROP

and amplification of stratospheric cooling with increasing height
in the SSU domain (Fig. 6 A and G, respectively).

In contrast to the fingerprint patterns, the leading multimodel
noise modes in the middle and right columns of Fig. 6 display
smaller-scale variability with pronounced meridional structure.
For a given sounding channel, no noise mode has temperature
changes with uniform sign at all latitudes. In the TROP
domain, the leading noise mode reveals internal variability that is
anticorrelated between the tropics and midlatitudes (Fig. 6B).
This behavior is consistent with temperature fluctuations as-
sociated with the El Niño/Southern Oscillation (ENSO) (41).
For the SSU domain, the variability in the leading noise mode
is strongly anticorrelated between the tropics and extratropics
(Fig. 6H ), likely due to tropical upwelling and polar downwelling
driven by the shallow branch of the Brewer–Dobson circulation
(BDC). The noise modes for the MSU and SSU+MSU domains
capture aspects of both ENSO- and BDC-induced internal
variability.

To quantify the spatial similarity between fingerprint and
noise patterns in Fig. 6, we calculated r{F :N1} and r{F :N2},
the uncentered pattern correlations between F and the first two
noise modes of the concatenated control runs (37). Values of
r{F :N1} and r{F :N2} are smallest for the SSU and SSU+MSU
domains and largest for TROP and MSU (SI Appendix, Fig. S2).
This difference in pattern similarity across domains holds for
fingerprints calculated from individual CMIP6 HISText realiza-
tions, the HISText multimodel average, and satellite datasets. The
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Fig. 5. Signal, noise, and S/N ratios in model and observed SSU and MSU data. Signals were calculated by projecting temperature data for different sets of
atmospheric layers onto four fingerprints (SSU+MSU, TROP, MSU, and SSU) estimated from CMIP6 HISText simulations, and then fitting trends of increasing
length L years to the resulting projection time series (panel A). CMIP6 control run temperature data were projected onto the same four fingerprints, yielding
the projection time series Nctl(t). The noise �ctl(L) is estimated by fitting nonoverlapping L-year trends to Nctl(t) and calculating the SD of the L-year trend
distribution (panel B). The S/N ratio is the L-year signal in panel A divided by the respective values of �ctl(L) in panel B (Methods and SI Appendix). Model signals
are from 32 HISText realizations; model noise is from 4,050 y of control run data. Signals and S/N ratios in which observed temperature data are used are
plotted with symbols and dashed lines. The dashed horizontal line in panel C is the 1% significance level.

small r{F :N1} and r{F :N2} values for the SSU and SSU+MSU
domains help to explain their large S/N ratios in Fig. 5C—the
fingerprints for these two domains are more effective in filtering
out internal variability noise.

For individual spatial domains, the clustering of points with
similar correlation values in SI Appendix, Fig. S2 implies that
the fingerprints estimated from individual model results or
individual observational datasets are spatially similar. We show
this fingerprint similarity for the specific case of the SSU+MSU
domain (SI Appendix, Fig. S3). The fingerprints in SI Appendix,
Fig. S3 are the leading empirical orthogonal function (EOF)
of the individual model HISText simulations and the satellite
datasets.

It is likely that higher-order EOFs capture additional forced
components of atmospheric temperature change, such as the
nonlinear TLS response to time-evolving forcing by lower
stratospheric ozone depletion (28, 58). This is illustrated by
the spatial similarity between key features of the second EOF
of the satellite data and certain CMIP6 HISText simulations,
particularly the common negative loadings in the stratosphere at
high latitudes of the Southern Hemisphere (SI Appendix, Fig. S4).

Sensitivity Tests

We performed three sensitivity tests. The first explores the impact
on fingerprint results of removing global-mean temperature
signals. The second test considers the effect of accounting for large
differences in the mass of the six atmospheric layers analyzed here.
The third test examines whether S/N results are biased by overlap
between the weighting functions used to sample the temperatures
of these six layers (59).

In the first test, we find that removal of overall global-
mean stratospheric cooling and tropospheric signals does not
negate confident identification of an anthropogenic fingerprint
in the vertical structure of atmospheric temperature change
(SI Appendix, Figs. S5 and S6). However, removing global-
mean temperature changes in each of the six individual at-
mospheric layers—thereby removing information about vertical
temperature-change gradients—markedly reduces S/N ratios and
fingerprint detectability (Methods and SI Appendix).

The second and third sensitivity tests are described in
Methods and SI Appendix. Although both tests reduce S/N values
(SI Appendix, Figs. S7 and S8), the model-predicted SSU+MSU
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Fig. 6. Fingerprints and leading noise modes in CMIP6 simulations. Results are for four different spatial domains: TROP, MSU, SSU, and SSU+MSU (rows 1 to 4,
respectively). These domains comprise the two tropospheric layers, the three MSU layers, the three SSU layers, and the six MSU+SSU layers. The fingerprint (Left
column) is the first empirical orthogonal function (EOF) of the multimodel average atmospheric temperature changes computed from 32 HISText realizations
performed with nine different CMIP6 models. The first two noise EOFs (Middle and Right columns) were calculated from 4,050 y of concatenated preindustrial
control run data generated with the same nine models. In estimating fingerprints and noise EOFs, global-mean temperature changes were retained for each
of the six atmospheric layers considered. The dotted horizontal gray lines are plotted at the approximate peaks of the three SSU and three MSU weighting
functions. SI Appendix for further details.

fingerprint can still be consistently identified in each of the
individual HISText realizations and satellite datasets.

Conclusions

Our results illustrate that including information from the
mid to upper stratosphere (S25−50) substantially enhances the
detectability of an anthropogenic fingerprint on Earth’s at-
mospheric temperature. This enhancement holds for observa-
tions and for individual model HISText realizations. Extending
latitude-height fingerprints from the lower stratosphere to the
S25−50 layer samples a region of the atmosphere where the direct
radiative signature of CO2 is prominent (1, 2, 8), the temperature
signal driven by CO2 increase is large, and the noise of natural
internal variability is low.

The SSU+MSU vertical fingerprint extends from the lower
troposphere to roughly 50 km above the surface. Signal-to-noise
(S/N) ratios for the SSU+MSU domain consistently exceed 38 in

the satellite data analyzed here. This value is virtually impossible
to obtain by chance alone if our model-based estimates of signal
and noise are realistic (55). In the satellite datasets, the S/N
ratios for the SSU+MSU domain are roughly a factor of five
larger than in the case of the “MSU only” vertical fingerprint,
which truncates at an altitude of approximately 20 to 25 km
(Fig. 5C ).

The larger S/N values for the SSU+MSU fingerprint arise not
only from the large cooling signal in the mid to upper stratosphere
but also from the low internal variability noise in the S25−50
layer (Fig. 2) and the distinct differences between S25−50 signal
and noise spatial patterns (SI Appendix, Fig. S2). As a result,
including the S25−50 layer in the SSU+MSU vertical fingerprint
more effectively damps the noise of natural internal variability. A
mass-weighted fingerprint analysis diminishes the contribution
of stratospheric cooling and is less effective at separating signal
and noise but does not negate identification of the SSU+MSU
fingerprint.
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One issue revealed by this study warrants further attention. In
the CMIP6 models analyzed here, model-predicted stratospheric
cooling over 1986 to 2022 is significantly larger than in the SSU
data (Fig. 2 A–C ). Multiple factors are likely to contribute to this
discrepancy. These factors include model errors in the imposed
anthropogenic and natural external forcings (42, 43, 60), in
the simulated response to these forcings, and in the properties
of internal variability. Mismatches in the random phasing of
simulated and observed variability may also be relevant (41, 44),
along with residual errors in satellite temperature datasets
(25, 27, 61).

In the troposphere, accounting for model-versus-observed
differences in the phasing of Pacific decadal variability improves
agreement between simulated and observed temperature trends
over the satellite era (44). The magnitude of decadal internal
variability is smaller in the mid to upper stratosphere than in the
troposphere (Fig. 1). It is unlikely, therefore, that either phasing
differences or model errors in the amplitude of decadal variability
could fully explain why the simulated cooling of the S25−50 layer
is significantly larger than observed (Fig. 2 A–C ). Forcing errors
appear to be a more plausible explanation for this discrepancy,
particularly in view of the substantial (and ongoing) evolution of
forcing estimates between CMIP5 and CMIP6 (39, 42, 60).

The challenge in interpreting differences between simulated
and observed temperature trends lies in reliably quantifying
the relative contributions of the multiple factors mentioned
above. Such work will benefit from systematic exploration
of uncertainties in radiative forcing (42, 60, 62, 63). It is
also important to perform rigorous model-data comparisons of
decadal variability for stratospheric temperature, as has been done
for tropospheric temperature (55, 64).§

Model-based decadal variability estimates are an integral part
of our fingerprint study. The reliability of these estimates
underpins the credibility of our S/N ratios (Fig. 5). We note,
however, that the CMIP6 models analyzed here would have
to underestimate the observed (but uncertain) natural internal
variability of stratospheric temperature by more than an order of
magnitude in order to negate identification of an anthropogenic
fingerprint in the SSU and SSU+MSU domains. We find no
evidence that such an error exists (Fig. 1).

In summary, the warming of the troposphere and cooling
of the stratosphere across all latitudes is a unique fingerprint
of greenhouse gas forcing. If tropospheric warming were solely
due to solar activity, warming rather than cooling of the upper
stratosphere would be expected (15, 23, 65). Alternatively, if
stratospheric cooling and tropospheric warming at all latitudes—
sustained over decades—were caused by internal variability
alone, then similar patterns should sometimes emerge in the
many long control runs of global models. This is not the
case. Thus, the ability to examine the vertical structure of
atmospheric temperature changes is a powerful tool for separating
human and natural effects on climate. Extending the reach of
“vertical fingerprinting” from the lower troposphere to the upper
stratosphere provides incontrovertible evidence of anthropogenic
impact on Earth’s climate.

Materials and Methods
Satellite Data. We rely on satellite data from three groups: Remote Sensing
Systems (RSS) (66), the Center for Satellite Applications and Research (STAR)

§Such comparisons are hampered by the relatively short length of the observations and
by the availability of only a single manifestation of forced and unforced temperature
changes.

(61, 67), and the University of Alabama at Huntsville (UAH) (26). STAR is the
only current source of spatially resolved temperature data for SSU channels
1, 2, and 3 (27). STAR, RSS, and UAH each supply MSU-based measurements
of the temperatures of the lower stratosphere (TLS) and the mid to upper
troposphere (TMT). We apply a standard regression-based method to adjust TMT
for the influence it receives from lower stratospheric cooling (68, 69), thereby
obtaining the temperature of the total troposphere (TTT; SI Appendix). Only RSS
and UAH provide MSU estimates of the temperature of the lower troposphere
(TLT). We “pair” STAR SSU data with UAH and RSS MSU data to generate two
observed datasets spanning the lower troposphere to the upper stratosphere.
Pairing STAR SSU, TLS, and TTT data with UAH TLT data yields a third observed
dataset (SI Appendix).

Model Data. The model synthetic SSU and MSU temperatures analyzed here
are from phase 6 of the Coupled Model Intercomparison Project (CMIP6) (32).
“Synthetic” indicates that the model results were calculated with weighting
functions that facilitate direct comparison between satellite and model
temperature changes (SI Appendix).

The synthetic SSU and MSU temperatures are from three different types
of numerical experiment: 1) Simulations with estimated historical changes in
natural and anthropogenic external forcings, which typically commence from
January 1850 and end in December 2014; 2) Scenario runs with post-2014
changes in anthropogenic external forcings that are specified according to a
Shared Socioeconomic Pathway which reaches radiative forcing of 8.5 W/m2 by
2100 (SSP5-8.5); and 3) Preindustrial control integrations with no year-to-year
changes in external forcings.

The CMIP6 historical and scenario simulations consider not only the effects
of CO2 increases, but also include the radiative effects of changes in other
greenhouse gases (70), anthropogenic aerosols, and solar and volcanic forcing.
Temperatures from historical simulations and corresponding scenario runs were
spliced together to permit comparison of model and observational results
over 1986 to 2022. We refer to these as extended historical runs (HISText;
SI Appendix). The CMIP6 model historical and SSP5-8.5 simulations used in our
study are identified in SI Appendix, Table S1. The control runs required for noise
estimation are listed in SI Appendix, Table S2. We analyzed a total of 32 HISText
realizations performed with nine different models and control runs generated
with the same nine models.

Fingerprint and Signal Trends. We project zonal-mean annual-mean atmo-
spheric temperature onto a searched-for fingerprint pattern F(x, p) estimated
from the multimodel average temperature changes in the HISText simulations.
This yields the projection time series Z(t), a measure of uncentered spatial
covariance (SI Appendix). The indices x, p, and t are over latitude, atmospheric
layer, and time (respectively). The T(x, p, t) temperature data projected onto
F(x, p) are either from satellite observations or individual HISText realizations.
Z(t) is a measure of the evolving pattern similarity between F(x, p)and T(x, p, t)
at each year t. We compute L-year least-squares linear trends in Z(t), starting in
1986, the beginning of continuous SSU records. The first trend length L is 5 y,
corresponding to the period 1986 to 1990; L is increased in one-year increments,
with L = 37 corresponding to 1986 to 2022. The signal S(L) is the least-squares
trend in Z(t). Large S(L) trends denote time-increasing similarity between the
latitude-height temperature changes in T(x, p, t) and the fingerprint pattern.

Noise Trends. To determine whether and when the values of S(L) in Fig. 5A
achieve statistical significance, we compare S(L) with null distributions in which
we know a priori that natural internal variability is the only explanation for trends
in pattern similarity. We use control runs with no year-to-year changes in external
forcing to generate these “no signal” distributions. We project a total of 4,050
y of atmospheric temperature data from nine CMIP6 preindustrial control runs
onto the TROP, SSU, MSU, and SSU+MSU fingerprints, resulting in a projection
time series Nctl(t) for each fingerprint. Nonoverlapping L-year trends in Nctl(t)
are then calculated for each value of L considered (i.e., for L = 5, 6, . . . 37 y).
For the L = 37-year analysis period, there are 109 individual samples of trends
in Nctl(t). The SD of these L-year noise trend distributions, σctl(L), is shown in
Fig. 5B and is the denominator of the S/N ratios in Fig. 5C.
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Global-Mean Removal. To determine whether our S/N results are solely driven
by large global-mean temperature changes (21, 39), we compared the baseline
case in Fig. 5 (case 1, which includes global-mean changes) with two additional
cases. In case 2, the global-mean temperature change in each of the six layers was
removed from each latitude band of each layer. Removal is performed for each
year t and each model and observational dataset. Case 3 is analogous to case 2,
but the subtraction involved the overall global-mean stratospheric temperature
change (the average of the global-mean changes in the three SSU channels
and TLS) and the overall global-mean tropospheric temperature change (the
average of the global-mean changes in TTT and TLT). These sensitivity tests are
described in SI and are shown in SI Appendix, Figs. S5 and S6 for the six-layer
SSU+MSU domain.

Data,Materials, and Software Availability. Observational satellite tempera-
ture data used in this study are publicly available at Remote Sensing Systems, the
University of Alabama at Huntsville, and the Center for Satellite Applications and
Research. Synthetic satellite temperature data from CMIP6 simulation output are
stored at: https://pcmdi.llnl.gov/research/DandA/. Analysis and plotting codes
are available on Zenodo at: https://doi.org/10.5281/zenodo.7803688.
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